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Departamento de Electrónica e Ingenieŕıa Electromecánica, Escuela de Ingenieŕıas Industriales, Universidad de Extremadura,
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Abstract. Melnikov-method-based theoretical results are demonstrated concerning the relative effective-
ness of any two weak excitations in suppressing homoclinic/heteroclinic chaos of a relevant class of dissi-
pative, low-dimensional and non-autonomous systems for the main resonance between the chaos-inducing
and chaos-suppressing excitations. General analytical expressions are derived from the analysis of generic
Melnikov functions providing the boundaries of the regions as well as the enclosed area in the ampli-
tude/initial phase plane of the chaos-suppressing excitation where homoclinic/heteroclinic chaos is inhib-
ited. The relevance of the theoretical results on chaotic attractor elimination is confirmed by means of
Lyapunov exponent calculations for a two-well Duffing oscillator.

PACS. 05.45.Ac Low-dimensional chaos – 05.45.Pq Numerical simulations of chaotic models –
05.45.Gg Control of chaos, applications of chaos

Previous theoretical work [1–3] on chaos suppression in
low-dimensional systems capable of being studied by the
Melnikov method (MM) [4–7] by adding a small exter-
nal harmonic excitation or by perturbing a system pa-
rameter with weak harmonic excitations is established in
terms of theorems concerning the analysis of the simple
zeros of generic Melnikov functions (MFs). For the case of
subharmonic resonances between the two driving frequen-
cies involved, Ω = pω (Ω(ω) being the chaos-suppressing
(chaos-inducing) frequency and p an integer), such theo-
rems give necessary and sufficient conditions for the frus-
tration of homoclinic/heteroclinic bifurcations, which is
typically the underlying mechanism to the suppression of
chaos in the aforementioned systems. In particular, these
theorems provide analytical estimates for the intervals
of initial phase difference Θ between the two excitations
involved on the one hand, and analytical estimates for
the intervals of the chaos-suppressing amplitude η on the
other, for which homoclinic/heteroclinic bifurcations can
be inhibited. With regard to the theoretically predicted
intervals of suppressory amplitudes, a weakness of the
theoretical approach is that the upper amplitude thresh-
old ηmax typically underestimates (unlike the lower am-
plitude threshold ηmin) the corresponding upper thresh-
old observed numerically. Clearly, one would also wish to
have analytical functions η = η(Θ) for the regularization
(in the aforementioned sense) boundaries in the Θ− η pa-
rameter plane, instead of separate sets of estimates for the
(ranges of) suitable values of η and Θ, respectively. An-
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other point is that the aforementioned suppression theo-
rems indistinctly deal with parametric and external ex-
citations (such as chaos-inducing and chaos-suppressing
excitations) although, to the best of the author’s knowl-
edge, a general discussion of the relative effectiveness of
any two of such chaos-suppressing excitations has as of
now not been undertaken, the only precedent being the
specific problem of suppressing chaotic escape from a one-
well Duffing oscillator by means of two particular chaos-
suppressing excitations [8].

In this present work, generic functions η = η(Θ) pro-
viding the regularization boundaries in the Θ − η param-
eter plane are derived on the basis of MM for the main
resonance case Ω = ω. Remarkably, such boundary func-
tions yield more accurate upper amplitude thresholds than
those predicted from the suppression theorems, and per-
mit one to reliably determine the relative suppressory ef-
fectiveness – in the sense of the extension in the Θ − η
parameter plane – of generic parametric and external ex-
citations. The pertinence of the theoretical findings to the
elimination of chaotic attractors is illustrated with the ex-
ample of a two-well Duffing oscillator.

The wide and relevant class of dissipative non-
autonomous systems, described by the differential
equations

ẋ = v,

v̇ = −dV (x)
dx

− d(x, v) + hc(x, v)Fc(t) + hs(x, v)Fs(t),

(1)
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is studied, where V (x) is a general potential, −d(x, v) is
a generic dissipative force, hc(x, v)Fc(t) is a general tem-
poral chaos-inducing excitation, and hs(x, v)Fs(t) is an as
yet undetermined suitable chaos-suppressing excitation,
with Fc(t), Fs(t) being harmonic functions of common fre-
quency ω and initial phases 0, Θ, respectively. It is also
assumed that the complete system (1) satisfies the MM re-
quirements, i.e., the dissipation and excitation terms are
small-amplitude perturbations of the underlying conser-
vative system ẋ = v, v̇ + dV (x)/dx = 0 which has a sepa-
ratrix (see [4–7] for a general background).

The application of MM to equation (1) yields the MF

M±
h,h′(t0) = D ± Ahar (ωt0) + Bhar′

(
ωt0 + ϕ±

h,h′

)
,

(2)

where the notation har(x) means indistinctly sin(x) or
cos(x), and A is a non-negative function while D, B can be
negative or non-negative functions depending upon the re-
spective parameters for each specific system. In particular,
D contains the effect of the damping and constant driv-
ings. In the absence of any constant driving, D < 0, while
one has the three cases D ≷ 0 when a (positive) constant
driving acts on the system besides the dissipative force.
Also, A and B contain the effect of the chaos-inducing
and chaos-suppressing excitations, respectively. Note that
changing the sign of B is equivalent to having a fixed shift
of the initial phase: B → −B ⇐⇒ ϕ±

h,h′ → ϕ±
h,h′ ± π

where the two signs before π apply to each of the sign
superscripts of ϕ. Therefore, B will be considered (for in-
stance) to be a positive function in the following.

It is well known that the simple zeros of the MF give
rise to transversal homoclinic points and chaotic phenom-
ena [6]. Observe that, as initial time t0 and phase are
not fixed, one can study the simple zeros of M±

h,h′(t0) by
choosing quite freely the trigonometric functions in equa-
tion (2). Therefore, to illustrate the general procedure one
can consider, for instance, the damped driven two-well
Duffing oscillator [9–12], subjected to a PE of the cubic
term, studied in [13]:

ẍ − x + βx3 = −δ ẋ + γ cos(ωt) − ηβx3 cos(ωt + Θ),
(3)

where η and Θ are the normalized amplitude and ini-
tial phase, respectively, of the suppressory PE (0 < δ,
γ, η � 1). The MF associated with the left homoclinic
orbit is

M−(τ0) = −D − A sin(ωτ0) − B sin(ωτ0 + Θ), (4)

with

D ≡ 4δ

3β
,

A ≡
(

2
β

)1/2

πγω sech
(πω

2

)
,

B ≡ πη

6β

(
4ω2 + ω4

)
csch

(πω

2

)
· (5)

The MF (4) will be used to illustrate the generic method.
Note that the MFs (2) and (4) are connected by linear
relationships which are known for each specific system (1):

t0 = t0(τ0, ω), Θ = Θ
(
ϕ±

h,h′

)
. (6)

Let us suppose that, in the absence of any chaos-
suppressing excitation (B = 0), the associated MF
M−

0 (τ0) = −D − A sin(ωτ0) changes sign at some τ0, i.e.,
D � A. Clearly, equation (4) can be recast into the form

M−(τ0) = −D − (A + B cosΘ) sin(ωτ0)
− B sin Θ cos(ωτ0)

� −D +
[
(A + B cosΘ)2 + B2 sin2 Θ

]1/2
. (7)

If we now let the chaos-suppressing excitation act on the
system such that

B2 + 2AB cosΘ + A2 − D2 � 0, (8)

this relationship represents a sufficient condition for
M−(τ0) to be negative (or null) for all τ0. The equals
sign in equation (8) yields the boundary of the region in
the Θ − η plane where homoclinic chaos is suppressed:

η = η−
sin,sin ≡

[
− cosΘ ±

√
cos2 Θ − (1 − D2/A2)

]
R,

(9)

with

R = RPE ≡ 6
√

2βγ

4ω + ω3
tanh

(πω

2

)
(10)

(cf. Eqs. (5) and (8)), and where the sign+(−) before the
square root corresponds to the upper (lower) branch of the
boundary. It is worth mentioning that a similar relation-
ship to that in equation (8) is discussed in [14] for the par-
ticular case A = B, which is associated with a Duffing-van
der Pol oscillator where the chaos-suppressing excitation is
an additional forcing term with an initial phase ωϕ instead
of ϕ. Similarly, the boundary functions corresponding to
the respective MFs (2) are

η±
cos,cos = η±

sin,sin ≡
[
∓ cosϕ ±

√
cos2 ϕ − (1−D2/A2)

]
R,

(11a)

η±
cos,sin = −η±

sin,cos ≡
[
∓ sin ϕ ±

√
sin2 ϕ−(1−D2/A2)

]
R,

(11b)

for B > 0 (cf. Eq. (2)), and

η±
cos,cos = η±

sin,sin ≡
[
± cosϕ ±

√
cos2 ϕ − (1−D2/A2)

]
R,

(12a)

η±
cos,sin = −η±

sin,cos ≡
[
± sin ϕ ±

√
sin2 ϕ−(1−D2/A2)

]
R,

(12b)

for B < 0 (cf. Eq. (2)). The two signs before the square
root apply to each of the sign superscripts of η±

h,h′ , which,
in its turn, is independent of the sign of D.
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Remarks

First, the boundary functions (11, 12) represent loops in
the ϕ − η plane which are symmetric with respect to the
corresponding optimal suppressory value ϕopt predicted
by the previous theoretical approach [1], as expected.

Second, the lower branch of each boundary func-
tions (11, 12), ηlower = ηlower(ϕ), exhibits a minimum
at the corresponding ϕopt value, which is η = ηmin ≡
(1−|D|/A)R, i.e., the lower amplitude threshold predicted
by the suppression theorems [1].

Third, the maximum range of suppressory initial phase
differences occurs when the upper and lower branches of
the boundary functions coincide, i.e., when the square
root cancels out (cf. Eqs. (11, 12)). If ∆ϕmax denotes
the maximum deviation from ϕopt, then, by substituting
ϕ = ϕopt±∆ϕmax into the square root and taking into ac-
count the respective value ϕopt for each MF M±

h,h′ (cf. [1]),
one obtains ∆ϕmax = arcsin(|D|/A) for all the cases, i.e.,
one recovers the expression derived from the previous the-
oretical approach [1].

Fourth, the upper branch of each boundary func-
tions (11, 12), ηupper = ηupper(ϕ), exhibits a maximum
at the respective ϕopt value, which is η = η∗

max ≡
(1 + |D|/A)R > ηmax ≡ R, with ηmax being the upper
amplitude threshold predicted by the suppression the-
orems [1]. Computer simulations indicate that η∗

max is
clearly closer than ηmax to the respective numerically ob-
tained threshold.

Fifth, the boundary functions (11, 12) permit one to
reliably compare the relative effectiveness of any two
chaos-suppressing excitations, in particular, external and
parametric excitations. Indeed, since the functions A, D
are fixed for a given initial chaotic state (B = 0), and the
area enclosed by any boundary functions (11, 12) is given
by

AR ≡
∫ ϕopt+∆ϕmax

ϕopt−∆ϕmax

(ηupper − ηlower) dϕ = 4
( |D|

A

)
R,

(13)

the relative inhibitory effectiveness of any two chaos-
suppressing excitations, denoted as I, II, can be quanti-
fied by

ARI

ARII

=
RI

RII
· (14)

Note that one finds AR → 0 as D → 0, as expected,
which corresponds to the limiting Hamiltonian case with
no constant drivings. Figure 1 summarizes the aforemen-
tioned properties of a generic boundary functions (11, 12).
As an illustrative example of the area criterion, consider
the damped driven two-well Duffing oscillator, subjected
now to an additional forcing term, instead of a PE of the
cubic term (cf. Eq. (3)):

ẍ − x + βx3 = −δ ẋ + γ cos(ωt) + ηγ cos(ωt + Θ). (15)

The MF associated with the left homoclinic orbit is

M ′−(τ0) = −D − A sin(ωτ0) − B′ sin(ωτ0 + Θ), (16)

Fig. 1. Generic boundary function (cf. Eqs. (11, 12)) encir-
cling the region where homoclinic/heteroclinic bifurcations are
frustrated in the suppressory ϕ − η parameter plane.

with

B′ =
(

2
β

)1/2

πηγω sech
(πω

2

)
, (17)

and D, A given by equation (5). The corresponding
boundary function is given by equation (9) (as in the PE
case) now with

R = RAF ≡ 1. (18)

Thus, the area criterion (14) yields

ARP E

ARAF

=
6
√

2βγ

4ω + ω3
tanh

(πω

2

)
, (19)

whose value is one-to-one determined for each initial
chaotic state. Generally, this means that the choice of the
most suitable chaos-suppressing excitation can strongly
depend upon the specific initial chaotic state to be
considered.

Next, one can compare the theoretical results ob-
tained from MM and Lyapunov exponent (LE) calcu-
lations of the two-well Duffing oscillator subjected to
the two aforementioned types of chaos-suppressing exci-
tations (cf. Eqs. (3) and (15)). It is worth noting that
one cannot expect too good a quantitative agreement be-
tween the two kinds of findings because LE provides in-
formation concerning solely steady responses, while MM
is a perturbative method generally related to transient
chaos. LEs were computed using a version of the algo-
rithm introduced in [15] and the integration was typi-
cally up to 2000 drive cycles for the fixed parameters
β = 4, δ = 0.154, γ = 0.095, ω = 1.1. In the absence
of the chaos-suppressing excitations (η = 0), the Duff-
ing oscillator exhibits a strange chaotic attractor with
a maximal LE λ+(η = 0) = 0.127 bits/s. The maxi-
mal LE was calculated for each point on an 100 × 100
grid, with (normalized) initial phase Θ and amplitude η
along the horizontal and vertical axes, respectively, for
both types of chaos-suppressing excitations. The results
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Fig. 2. Grid of 100 × 100 points in the Θ − η parameter
plane for the two-well Duffing oscillator subjected to a chaos-
suppressing PE (cf. Eq. (3)). Grey (black) squares indicate
that the respective maximal LE, λ+(η �= 0), is larger than
10−3(0.127 = λ+(η = 0)). Solid black contours indicate the
two predicted boundary functions which are symmetric with
respect to the optimal suppressory values 0, π, respectively.

for the parametric and external chaos-suppressing exci-
tations (cf. Eqs. (3) and (15), respectively) are shown in
Figures 2 and 3, respectively. The diagrams in these figures
were constructed by only plotting points on the grid when
the respective LE was larger than 10−3 (grey squares) or
than λ+(η = 0) (black squares), and with solid black con-
tours denoting the respective theoretical boundary func-
tions (cf. Eqs. (11a) and (12a)). One sees that complete
regularization (λ+(η �= 0) ≤ 0) mainly appears inside
maximal islands which symmetrically contain the respec-
tive theoretically predicted areas where even the chaotic
transients are eliminated. The size of the main regular-
ization islands is notably larger for the additional forcing
case than for the PE case, which is in agreement with the
area criterion: ARP E/ARAF 
 0.264097 (cf. Eq. (19)). The
structure of the secondary and minor islands of regular-
ization is clearly more complex for the parametric than
for the external chaos-suppressing excitation, as can be
appreciated by comparison of Figures 2 and 3. Another
difference is that the entire diagram of Figure 2 is peri-
odic along the Θ-axis, with fundamental period equal to
π (note that there exist two optimal suppressory values
Θopt,1 ≡ 0, Θopt,2 ≡ π (cf. [2])), while the entire diagram
corresponding to the external excitation (Fig. 3) is sym-
metric with respect to the (single) optimal suppressory
value Θopt ≡ π. This is a consequence of the survival of the
symmetries existing in the absence of chaos-suppressing
excitations [2].

In summary, an MM-based theoretical approach
has been presented concerning the relative effective-
ness of weak periodic excitations in suppressing homo-
clinic/heteroclinic chaos of an important class of dissipa-
tive, low-dimensional and non-autonomous systems for the
main resonance between the chaos-inducing and chaos-

Fig. 3. Grid of 100×100 points in the Θ−η parameter plane for
the two-well Duffing oscillator subjected to an external chaos-
suppressing excitation (cf. Eq. (15)). Grey (black) squares in-
dicate that the respective maximal LE, λ+(η �= 0), is larger
than 10−3(0.127 = λ+(η = 0)). The solid black contour indi-
cates the predicted boundary function which is symmetric with
respect to the single optimal suppressory value π.

suppressing excitations. A criterion based on the area in
the suppressory amplitude/initial phase parameter plane,
where suppression of homoclinic chaos is guaranteed, was
deduced and shown to be useful in choosing the most suit-
able of the possible chaos-suppressing excitations. Addi-
tionally, the choice of the most suitable chaos-suppressing
excitation was shown to exhibit sensitivity to the partic-
ular initial chaotic state.
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